Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 132024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38655849

RESUMEN

Mutations in the human PURA gene cause the neurodevelopmental PURA syndrome. In contrast to several other monogenetic disorders, almost all reported mutations in this nucleic acid-binding protein result in the full disease penetrance. In this study, we observed that patient mutations across PURA impair its previously reported co-localization with processing bodies. These mutations either destroyed the folding integrity, RNA binding, or dimerization of PURA. We also solved the crystal structures of the N- and C-terminal PUR domains of human PURA and combined them with molecular dynamics simulations and nuclear magnetic resonance measurements. The observed unusually high dynamics and structural promiscuity of PURA indicated that this protein is particularly susceptible to mutations impairing its structural integrity. It offers an explanation why even conservative mutations across PURA result in the full penetrance of symptoms in patients with PURA syndrome.


PURA syndrome is a neurodevelopmental disorder that affects about 650 patients worldwide, resulting in a range of symptoms including neurodevelopmental delays, intellectual disability, muscle weakness, seizures, and eating difficulties. The condition is caused by a mutated gene that codes for a protein called PURA. PURA binds RNA ­ the molecule that carries genetic information so it can be translated into proteins ­ and has roles in regulating the production of new proteins. Contrary to other conditions that result from mutations in a single gene, PURA syndrome patients show 'high penetrance', meaning almost every reported mutation in the gene leads to symptoms. Proske, Janowski et al. wanted to understand the molecular basis for this high penetrance. To find out more, the researchers first examined how patient mutations affected the location of the PURA in the cell, using human cells grown in the laboratory. Normally, PURA travels to P-bodies, which are groupings of RNA and proteins involved in regulating which genes get translated into proteins. The researchers found that in cells carrying PURA syndrome mutations, PURA failed to move adequately to P-bodies. To find out how this 'mislocalization' might happen, Proske, Janowski et al. tested how different mutations affected the three-dimensional folding of PURA. These analyses showed that the mutations impair the protein's folding and thereby disrupt PURA's ability to bind RNA, which may explain why mutant PURA cannot localize correctly. Proske, Janowski et al. describe the molecular abnormalities of PURA underlying this disorder and show how molecular analysis of patient mutations can reveal the mechanisms of a disease at the cell level. The results show that the impact of mutations on the structural integrity of the protein, which affects its ability to bind RNA, are likely key to the symptoms of the syndrome. Additionally, their approach used establishes a way to predict and test mutations that will cause PURA syndrome. This may help to develop diagnostic tools for this condition.


Asunto(s)
Trastornos del Neurodesarrollo , Cuerpos de Procesamiento , Humanos , Trastornos del Neurodesarrollo/metabolismo , Trastornos del Neurodesarrollo/patología , Cuerpos de Procesamiento/metabolismo , Cuerpos de Procesamiento/patología , Gránulos de Estrés/metabolismo , Cristalografía por Rayos X , Dimerización , Dominios Proteicos , Dicroismo Circular , Proteínas Recombinantes , Pliegue de Proteína , Penetrancia , Sustitución de Aminoácidos , Mutación Puntual , Células HeLa
2.
J Chem Inf Model ; 63(18): 5701-5708, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37694852

RESUMEN

Machine learning potentials have emerged as a means to enhance the accuracy of biomolecular simulations. However, their application is constrained by the significant computational cost arising from the vast number of parameters compared with traditional molecular mechanics. To tackle this issue, we introduce an optimized implementation of the hybrid method (NNP/MM), which combines a neural network potential (NNP) and molecular mechanics (MM). This approach models a portion of the system, such as a small molecule, using NNP while employing MM for the remaining system to boost efficiency. By conducting molecular dynamics (MD) simulations on various protein-ligand complexes and metadynamics (MTD) simulations on a ligand, we showcase the capabilities of our implementation of NNP/MM. It has enabled us to increase the simulation speed by ∼5 times and achieve a combined sampling of 1 µs for each complex, marking the longest simulations ever reported for this class of simulations.


Asunto(s)
Simulación de Dinámica Molecular , Redes Neurales de la Computación , Ligandos , Aprendizaje Automático
3.
Eur J Med Chem ; 258: 115587, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37406382

RESUMEN

Protein-protein interactions (PPIs) constitute an important but challenging class of molecular targets for small molecules. The PEX5-PEX14 PPI has been shown to play a critical role in glycosome biogenesis and its disruption impairs the metabolism in Trpanosoma parasites, eventually leading to their death. Therefore, this PPI is a potential molecular target for new drugs against diseases caused by Trypanosoma infections. Here, we report a new class of peptidomimetic scaffolds to target the PEX5-PEX14 PPI. The molecular design was based on an oxopiperazine template for the α-helical mimetics. A structural simplification along with modifications of the central oxopiperazine scaffold and addressing the lipophilic interactions led to the development of peptidomimetics that inhibit PEX5-TbPEX14 PPI and display cellular activity against T. b. brucei. This approach provides an alternative approach towards the development of trypanocidal agents and may be generally useful for the design of helical mimetics as PPI inhibitors.


Asunto(s)
Proteínas de la Membrana , Proteínas de la Membrana/metabolismo
4.
Sci Rep ; 12(1): 9593, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35688849

RESUMEN

The replication complex (RC) of SARS-CoV-2 was recently shown to be one of the fastest RNA-dependent RNA polymerases of any known coronavirus. With this rapid elongation, the RC is more prone to incorporate mismatches during elongation, resulting in a highly variable genomic sequence. Such mutations render the design of viral protein targets difficult, as drugs optimized for a given viral protein sequence can quickly become inefficient as the genomic sequence evolves. Here, we use biochemical experiments to characterize features of RNA template recognition and elongation fidelity of the SARS-CoV-2 RdRp, and the role of the exonuclease, nsp14. Our study highlights the 2'OH group of the RNA ribose as a critical component for RdRp template recognition and elongation. We show that RdRp fidelity is reduced in the presence of the 3' deoxy-terminator nucleotide 3'dATP, which promotes the incorporation of mismatched nucleotides (leading to U:C, U:G, U:U, C:U, and A:C base pairs). We find that the nsp10-nsp14 heterodimer is unable to degrade RNA products lacking free 2'OH or 3'OH ribose groups. Our results suggest the potential use of 3' deoxy-terminator nucleotides in RNA-derived oligonucleotide inhibitors as antivirals against SARS-CoV-2.


Asunto(s)
COVID-19 , SARS-CoV-2 , Antivirales/química , Antivirales/farmacología , Humanos , Nucleótidos/farmacología , ARN Viral/genética , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/genética , Ribosa , SARS-CoV-2/genética , Proteínas no Estructurales Virales/metabolismo , Proteínas Virales/genética , Proteínas Virales/farmacología , Replicación Viral/genética
5.
J Chem Inf Model ; 61(10): 5256-5268, 2021 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-34597510

RESUMEN

African and American trypanosomiases are estimated to affect several million people across the world, with effective treatments distinctly lacking. New, ideally oral, treatments with higher efficacy against these diseases are desperately needed. Peroxisomal import matrix (PEX) proteins represent a very interesting target for structure- and ligand-based drug design. The PEX5-PEX14 protein-protein interface in particular has been highlighted as a target, with inhibitors shown to disrupt essential cell processes in trypanosomes, leading to cell death. In this work, we present a drug development campaign that utilizes the synergy between structural biology, computer-aided drug design, and medicinal chemistry in the quest to discover and develop new potential compounds to treat trypanosomiasis by targeting the PEX14-PEX5 interaction. Using the structure of the known lead compounds discovered by Dawidowski et al. as the template for a chemically advanced template search (CATS) algorithm, we performed scaffold-hopping to obtain a new class of compounds with trypanocidal activity, based on 2,3,4,5-tetrahydrobenzo[f][1,4]oxazepines chemistry. The initial compounds obtained were taken forward to a first round of hit-to-lead optimization by synthesis of derivatives, which show activities in the range of low- to high-digit micromolar IC50 in the in vitro tests. The NMR measurements confirm binding to PEX14 in solution, while immunofluorescent microscopy indicates disruption of protein import into the glycosomes, indicating that the PEX14-PEX5 protein-protein interface was successfully disrupted. These studies result in development of a novel scaffold for future lead optimization, while ADME testing gives an indication of further areas of improvement in the path from lead molecules toward a new drug active against trypanosomes.


Asunto(s)
Oxazepinas , Tripanocidas , Diseño Asistido por Computadora , Proteínas de la Membrana/metabolismo , Receptor de la Señal 1 de Direccionamiento al Peroxisoma , Receptores Citoplasmáticos y Nucleares , Proteínas Represoras/metabolismo , Tripanocidas/farmacología
8.
Artículo en Inglés | MEDLINE | ID: mdl-32205343

RESUMEN

Multidrug resistance among Gram-negative bacteria is a major global public health threat. Metallo-ß-lactamases (MBLs) target the most widely used antibiotic class, the ß-lactams, including the most recent generation of carbapenems. Interspecies spread renders these enzymes a serious clinical threat, and there are no clinically available inhibitors. We present the crystal structures of IMP-13, a structurally uncharacterized MBL from the Gram-negative bacterium Pseudomonas aeruginosa found in clinical outbreaks globally, and characterize the binding using solution nuclear magnetic resonance spectroscopy and molecular dynamics simulations. The crystal structures of apo IMP-13 and IMP-13 bound to four clinically relevant carbapenem antibiotics (doripenem, ertapenem, imipenem, and meropenem) are presented. Active-site plasticity and the active-site loop, where a tryptophan residue stabilizes the antibiotic core scaffold, are essential to the substrate-binding mechanism. The conserved carbapenem scaffold plays the most significant role in IMP-13 binding, explaining the broad substrate specificity. The observed plasticity and substrate-locking mechanism provide opportunities for rational drug design of novel metallo-ß-lactamase inhibitors, essential in the fight against antibiotic resistance.


Asunto(s)
beta-Lactamasas , Antibacterianos/farmacología , Inhibidores de beta-Lactamasas , beta-Lactamasas/genética , beta-Lactamas , Carbapenémicos
9.
J Med Chem ; 63(2): 847-879, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31860309

RESUMEN

Trypanosoma protists are pathogens leading to a spectrum of devastating infectious diseases. The range of available chemotherapeutics against Trypanosoma is limited, and the existing therapies are partially ineffective and cause serious adverse effects. Formation of the PEX14-PEX5 complex is essential for protein import into the parasites' glycosomes. This transport is critical for parasite metabolism and failure leads to mislocalization of glycosomal enzymes, with fatal consequences for the parasite. Hence, inhibiting the PEX14-PEX5 protein-protein interaction (PPI) is an attractive way to affect multiple metabolic pathways. Herein, we have used structure-guided computational screening and optimization to develop the first line of compounds that inhibit PEX14-PEX5 PPI. The optimization was driven by several X-ray structures, NMR binding data, and molecular dynamics simulations. Importantly, the developed compounds show significant cellular activity against Trypanosoma, including the human pathogen Trypanosoma brucei gambiense and Trypanosoma cruzi parasites.


Asunto(s)
Proteínas de la Membrana/antagonistas & inhibidores , Proteínas Protozoarias/antagonistas & inhibidores , Piridinas/síntesis química , Piridinas/farmacología , Tripanocidas/síntesis química , Tripanocidas/farmacología , Animales , Cristalografía por Rayos X , Diseño de Fármacos , Humanos , Espectroscopía de Resonancia Magnética , Proteínas de la Membrana/biosíntesis , Modelos Moleculares , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Mioblastos/efectos de los fármacos , Mioblastos/parasitología , Proteínas Protozoarias/biosíntesis , Ratas , Relación Estructura-Actividad , Trypanosoma brucei gambiense/efectos de los fármacos , Trypanosoma brucei gambiense/metabolismo , Trypanosoma brucei rhodesiense/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...